Abstract

Magnetic resonance (MR) imaging offers the highest sensitivity for detecting bone necrosis. We evaluated osteonecrosis in rabbit models by calculating the percentage of fat to (fat + water) [F/(F+W)] on MR spectroscopy (MRS) and compared MR spectroscopy and imaging findings with corresponding histological results. To model the natural course of articular osteonecrosis, we removed the fourth tarsal bone in 45 rabbits, froze it for 5 min in liquid nitrogen to produce complete cellular necrosis, and then replaced the bone into the knee joint. We performed Carr-Purcell-Meiboom-Gill proton spectroscopic imaging to assess necrotic bone at 3 days and one, 2, 3, 4, 8, 12, 16, and 20 weeks after osteonecrosis and calculated the percentage of F/(F+W) of each bone. We also performed conventional T1- and T2-weighted imaging and compared all data to histological findings to analyze the natural course of necrosis. T1-weighted MR imaging demonstrated obvious low signal intensity at 2 to 8 weeks and recovery at 12 to 20 weeks, whereas T2-weighted imaging demonstrated inconsistent intensities throughout the period. The postoperative percentage of F/(F+W) measured using line scan MRS decreased to 8.88% at 3 weeks, 6.22% at 8 weeks, and 34.40% at 20 weeks results that were mostly consistent with MR imaging findings. Histological findings demonstrated complete absence of osteocyte nuclei and loss of osteoid-osteogenesis at 3 to 8 weeks. Recovery of bone marrow was identified as an increase in the area of fat after 12 weeks. Osteonecrosis delineated by T1-weighted MR imaging demonstrated fat content in the bone marrow that correlated with histology. The present MRS modality can be used to calculate the percentage of F/(F+W) of osteonecrosis to enable objective assessment of recovery and quantification of osteonecrosis to provide a numerical value for osteonecrosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call