Abstract

The effect of increasing levels of metals from anthropogenic sources on Antarctic invertebrates is poorly understood. Here we exposed limpets (Nacella concinna) to 0, 0.12 and 0.25μgL−1 lead for 12, 24, 48 and 168h. We subsequently quantified the changes in protein abundance from gill, using 2D gel electrophoresis and mass spectrometry. We identified several antioxidant proteins, including the metal binding Mn-superoxide dismutase and ferritin, increasing abundances early on. Chaperones involved in the redox-dependent maturation of proteins in the endoplasmic reticulum (ER) showed higher abundance with lead at 48h. Lead also increased the abundance of Zn-binding carbonic anhydrase at 12h, suggesting a challenge to acid-base balance. Metabolic proteins increased abundance at 168h, suggesting a greater ATP demand during prolonged exposure. Changes in abundance of the small G-protein cdc42, a signaling protein modifying cytoskeleton, increased early and subsequently reversed during prolonged exposure, possibly leading to the modification of thick filament structure and function. We hypothesize that the replacement of metals initially affected antioxidant proteins and increased the production of reactive oxygen species. This disrupted the redox-sensitive maturation of proteins in the ER and caused increased ATP demand later on, accompanied by changes in cytoskeleton. SignificanceProteomic analysis of gill tissue in Antarctic limpets exposed to different concentrations of lead (Pb) over a 168h time period showed that proteomic changes vary with time. These changes included an increase in the demand of scavenging reactive oxygen species, acid-base balance and a challenge to protein homeostasis in the endoplasmic reticulum early on and subsequently an increase in energy metabolism, cellular signaling, and cytoskeletal modifications. Based on this time course, we hypothesize that the main mode of action of lead is a replacement of metal-cofactors of key enzymes involved in the scavenging of reactive oxygen species and the regulation of acid-base balance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.