Abstract

Allergic asthma is a pulmonary disease characterized by antigen-induced pulmonary eosinophilia, airway hyperresponsiveness, antigen-specific IgE antibody responses, and broncho constriction. In attempting to elucidate mechanisms associated with the pathogenesis of this disease, a number of animal models have been developed. The current studies were undertaken to develop a model of allergic asthma model in Brown Norway rats. Unlike the neutrophilic inflammatory response to inhaled particles in most strains of rats, inhalation of antigens in sensitized Brown Norway rats results in a complex cellular response which is characterized by a variety of inflammatory cell types, and is dependent on the time course of inflammatory cell recruitment. In characterizing this ovalbumin-challenge model of allergic asthma, it was important to assess the time course of pulmonary inflammation, cell proliferation, and apoptosis. Male Brown Norway rats were sensitized and boosted with intraperitoneal injections of ovalbumin in aluminum hydroxide on experimental days 1 and 8. On days 15-17, rats were challenged by an inhalation exposure to 5% ovalbumin and were evaluated by bronchoalveolar lavage (BAL) at 24 or 48 h postexposure (PE). Control rats were similarly treated to ovalbumin aerosol exposures; however, these animals had been sensitized and boosted with aluminum hydroxide (minus the ovalbumin). Cell differential evaluations demonstrated that the rats exposed for 3 days/24 h postexposure and for 2 days/ 48 h postexposure produced the greatest numbers of BAL eosinophils and corresponding indicators of pulmonary toxicity. It was interesting to note that earlier exposure time periods (i.e., 1 day/24 h PE) generated a predominantly neutrophilic inflammatory response, while longer exposure/postexposure time periods (i.e., 3 days/48 h) produced a predominant mononuclear inflammatory response. Subsequent studies demonstrated that the 2-day/ 48-h protocol produced the optimum eosinophilic, cytotoxic, cell proliferative, and apoptotic response. Histopathological evaluations demonstrated a chronically active alveolitis and bronchiolitis, characterized by epithelial cell proliferation in the airways and inflammatory cell proliferation in the alveoli. Studies are ongoing to assess the cell types undergoing apoptosis in both the airway and parenchymal regions to fully characterize this model in order to assess its relevance and utility for studying asthma in humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.