Abstract
In nine subjects sleep was recorded under base-line conditions with a habitual bedtime (prior wakefulness 16 h; lights off at 2300 h) and during recovery from sleep deprivation with a phase-advanced bedtime (prior wakefulness 36 h; lights off at 1900 h). The duration of phase-advanced recovery sleep was greater than 12 h in all subjects. Spectral analysis of the sleep electroencephalogram (EEG) revealed that slow-wave activity (SWA; 0.75-4.5 Hz) in non-rapid-eye-movement (NREM) sleep was significantly enhanced during the first two NREM-REM sleep cycles of displaced recovery sleep. The sleep stages 3 and 4 (slow-wave sleep) and SWA decreased monotonically over the first three and four NREM-REM cycles of, respectively, base-line and recovery sleep. The time course of SWA in base-line and recovery sleep could be adequately described by an exponentially declining function with a horizontal asymptote. The results are in accordance with the two-process model of sleep regulation in which it is assumed that SWA rises as a function of the duration of prior wakefulness and decreases exponentially as a function of prior sleep. We conclude that the present data do not provide evidence for a 12.5-h sleep-dependent rhythm of deep NREM sleep.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.