Abstract

Ferroptosis is a form of regulated, non-apoptotic cell death characterized by excessive lipid peroxidation that can be triggered by inhibition of the cystine-glutamate antiporter, system Xc- . Sorafenib, an FDA-approved multi-kinase inhibitor drug that is used for treatment of hepatocellular carcinoma (HCC), has been shown to induce ferroptosis. Protein phosphorylation changes upon sorafenib treatment have been previously reported in patient studies and in cell culture. However, early phosphorylation changes during induction of ferroptosis are not reported. This work highlights these changes through a time course from 7 to 60min of sorafenib treatment in human (SKHep1) HCC cells. A total of 6170 unique phosphosites from 2381 phosphoproteins are quantified, and phosphorylation changes occur after as little as 30 min of sorafenib treatment. By 60 min, notable changes included phosphosites significantly changing on p53 (P04637), CAD protein (P27708), and proteins important for iron homeostasis, such as heavy chain ferritin (FTH1; P02794), heme oxygenase 1 (HMOX1; P09601), and PCBP1 (Q15365). Additional sites on proteins in key regulatory pathways are identified, including sites in ferroptosis-related proteins, indicating the likely involvement of phospho-regulated signaling during ferroptosis induction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.