Abstract

The time-course of alteration in islet cell phospholipid content following d-glucose exposure in islet cells and in islet cell membranes was related to the ability of lipids extracted from both cultured pancreatic islet cells and from plasma membranes isolated from the islet cells to translocate calcium in two model membrane systems. The first model system (bulk-phase system) detected lipid species with the ability to bind calcium, irrespective of their ability to enhance calcium transport across cell membranes. The second system (multilamellar membrane system) detected lipid species with the ability to both bind calcium and to enhance calcium transport across cell membranes (true ionophores). Pre-exposure to high d-glucose concentration led to a rapid (within 1 min) fall in membrane phosphoinositides. This was partially blocked by mannoheptulose. A concurrent fall in calcium bindig activity of lipids from the plasma membrane was observed. In the whole islet cell fraction, d-glucose induced a marked increase in Ca 2+ ionophoretic activity. Unlike the fall in membrane polyphosphoinositides and membrane Ca 2+ binding activity, these changes were dependent on the presence of added extracellular calcium. l-Glucose was without effect on membrane phosphoinositide content. It is concluded that altered membrane and intracellular phospholipids may contribute to the increased availability of intracellular Ca 2+ following d-glucose stimulation by virtue of theie Ca 2+ binding and ionophoretic properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call