Abstract

ObjectiveThe aim of this study was to investigate the effect of time course on neurological impairment after acute hypobaric hypoxia exposure in mice and clarify the mechanism of acclimatization, so as to provide a suitable mice model and identify potential target against hypobaric hypoxia for further drug research. MethodMale C57BL/6J mice were exposed to hypobaric hypoxia at a simulated altitude of 7000 m for 1, 3, and 7 days (1HH, 3HH and 7HH respectively). The behavior of the mice was evaluated by novel object recognition (NOR) and morris water maze test (MWM), then, the pathological changes of mice brain tissues were observed by H&E and Nissl staining. In addition, RNA sequencing (RNA-Seq) was performed to characterize the transcriptome signatures, and enzyme-linked immunosorbent assay (ELISA), Real-time polymerase chain reaction (RT-PCR), and western blot (WB) were used to verify the mechanisms of neurological impairment induced by hypobaric hypoxia. ResultThe hypobaric hypoxia condition resulted in impaired learning and memory, decreased new object cognitive index, and increased escape latency to the hidden platform in mice, with significant changes seen in the 1HH and 3HH groups. Bioinformatic analysis of RNA-seq results of hippocampal tissue showed that 739 differentially expressed genes (DEGs) appeared in the 1HH group, 452 in the 3HH group, and 183 in the 7HH group compared to the control group. There were 60 key genes overlapping in three groups which represented persistent changes and closely related biological functions and regulatory mechanisms in hypobaric hypoxia-induced brain injuries. DEGs enrichment analysis showed that hypobaric hypoxia-induced brain injuries were associated with oxidative stress, inflammatory responses, and synaptic plasticity. ELISA and WB results confirmed that these responses occurred in all hypobaric hypoxic groups while attenuated in the 7HH group. VEGF-A-Notch signaling pathway was enriched by DEGs in hypobaric hypoxia groups and was validated by RT-PCR and WB. ConclusionThe nervous system of mice exposed to hypobaric hypoxia exhibited stress followed by gradual habituation and thus acclimatization over time, which was reflected in the biological mechanism involving inflammation, oxidative stress, and synaptic plasticity, and accompanied by activation of the VEGF-A-Notch pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call