Abstract

Changes in muscle stiffness after exercise-induced muscle damage have been classically inferred from passive torque-angle curves. Elastographic techniques can be used to estimate the shear modulus of a localized muscular area. This study aimed to quantify the changes in shear elastic modulus in different regions of the elbow flexors after eccentric exercise and their relation to muscle length. Shear elastic modulus and transverse relaxation time (T2 ) were measured in the biceps brachii and brachialis muscles of sixteen participants, before, 1 h, 48 h and 21 days after three sets of ten maximal isokinetic eccentric contractions performed at 120° s(-1) . The shear elastic modulus of the elbow flexors significantly increased 1 h (+46%; P = 0.005), with no significant change at 48 h and 21D, post-exercise. In contrast, T2 was not modified at 1 h but significantly increased at 48 h (+15%; P < 0.05). The increase in shear elastic modulus was more pronounced at long muscle lengths and reached a similar extent in the different regions of the elbow flexors. The normalized hysteresis area of shear elastic modulus-length relationship for the biceps brachii increased 1 h post-exercise (31%) in comparison with the pre-exercise value (18%), but was not significantly altered after five stretching cycles (P = 0.63). Our results show homogeneous changes in muscle shear elastic modulus within and between elbow flexors. The greater increase in shear elastic modulus observed at long muscle lengths suggests the putative involvement of both cross-bridges number and titin in the modifications of muscle shear elastic modulus after damaging exercise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.