Abstract
Cytochrome c-dependent electron transfer and apoptosome activation require protein-protein binding, which are mainly directed by conformational and specific electrostatic interactions. Cytochrome c contains four highly conserved tyrosine residues, one internal (Tyr67), one intermediate (Tyr48), and two more accessible to the solvent (Tyr74 and Tyr97). Tyrosine nitration by biologically-relevant intermediates could influence cytochrome c structure and function. Herein, we analyzed the time course and site(s) of tyrosine nitration in horse cytochrome c by fluxes of peroxynitrite. Also, a method of purifying each (nitrated) cytochrome c product by cation-exchange HPLC was developed. A flux of peroxynitrite caused the time-dependent formation of different nitrated species, all less positively charged than the native form. At low accumulated doses of peroxynitrite, the main products were two mononitrated cytochrome c species at Tyr97 and Tyr74, as shown by peptide mapping and mass spectrometry analysis. At higher doses, all tyrosine residues in cytochrome c were nitrated, including dinitrated (i.e., Tyr97 and Tyr67 or Tyr74 and Tyr67) and trinitrated (i.e., Tyr97, Tyr74, and Tyr67) forms of the protein, with Tyr67 well represented in dinitrated species and Tyr48 being the least prone to nitration. All mono-, di-, and trinitrated cytochrome c species displayed an increased peroxidase activity. Nitrated cytochrome c in Tyr74 and Tyr67, and to a lesser extent in Tyr97, was unable to restore the respiratory function of cytochrome c-depleted mitochondria. The nitration pattern of cytochrome c in the presence of tetranitromethane (TNM) was comparable to that obtained with peroxynitrite, but with an increased relative nitration yield at Tyr67. The use of purified and well-characterized mono- and dinitrated cytochrome c species allows us to study the influence of nitration of specific tyrosines in cytochrome c functions. Moreover, identification of cytochrome c nitration sites in vivo may assist in unraveling the chemical nature of proximal reactive nitrogen species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.