Abstract

In the present study we attempted to further define the time course and regional specificity of lead (Pb)-induced changes in the NMDA receptor complex and the influence of dopaminergic system modulations on these changes. Autoradiographic measurements of alterations in MK-801 binding, as evaluated under four different activation conditions (none, spermidine, glycine, or maximal activation), were performed in medial frontal cortex, dorsal striatum, and nucleus accumbens of male rats after 2 weeks or 8 months of chronic postweaning (from 21 days of age on) exposure to 0, 50, or 150 ppm Pb acetate in drinking water. The 8-month groups also received chronic intermittent intraperitoneal injections of saline, or of the dopamine (DA) agonist apomorphine or the D1 agonist SKF-82958 2-3 times per week beginning at 60 days of age. Two weeks of 50 ppm Pb exposure resulted in small but significant increases in MK-801 binding under conditions of glycine or spermidine activation, whereas decreases were observed in response to 150 ppm under conditions of no or maximal activation in all regions. After 8 months of Pb, concentration-dependent decreases in MK-801 binding were observed across regions under all activation conditions. These effects were noted at blood Pb concentrations averaging as low as 16 microg/dl. Pb-induced decreases in MK-801 binding were either partially or fully reversed by chronic intermittent treatment with the DA agonist apomorphine but not by the D1 agonist SKF-82958, implicating D2-based mechanisms in this reversal. Combined findings from this and previous studies based on this exposure protocol indicate a Pb-induced pattern of widespread hypoglutamatergic function accompanied by increased DA function in mesolimbic systems, a pattern of changes reminiscent of those proposed to underlie schizophrenia. Such findings suggest that Pb exposure, even at current environmental levels, could be a risk factor for behavioral and/or neurological disturbances arising from imbalances of glutamate/dopamine function in mesocorticolimbic systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.