Abstract

PurposeThe purpose of this research is to develop a time-cost optimization model to schedule repetitive projects while considering limited resource availability.Design/methodology/approachThe model is based on the constraint programming (CP) framework; it integrates multiple scheduling characteristics of repetitive activities such as continuous or fragmented execution, atypical activities and coexistence of different modes in an activity. To improve project performance while avoiding inefficient hiring and firing conditions, the strategy of bidirectional acceleration is presented and implemented, which requires keeping regular changes in the execution modes between successive subactivities in the same activity.FindingsTwo case studies involving a real residential building construction project and a hotel refurbishing project are used to demonstrate the application of the proposed model based on four different scenarios. The results show that (1) the CP model has great advantages in terms of solving speed and solution quality than its equivalent mathematical model, (2) higher project performance can be obtained compared to using previously developed models and (3) the model can be easily replicated or even modified to enable multicrew implementation.Originality/valueThe original contribution of this research is presenting a novel CP-based repetitive scheduling optimization model to solve the multimode resource-constrained time-cost tradeoff problem of repetitive projects. The model has the capability of minimizing the project total cost that is composed of direct costs, indirect costs, early completion incentives and late completion penalties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.