Abstract

The time-dependent pair correlation functions for a degenerate ideal quantum gas of charged particles in a uniform magnetic field are studied on the basis of equilibrium statistics. In particular, the influence of a flat hard wall on the correlations is investigated, both for a perpendicular and a parallel orientation of the wall with respect to the field. The coherent and incoherent parts of the time-dependent structure function in position space are determined from an expansion in terms of the eigenfunctions of the one-particle Hamiltonian. For the bulk of the system, the intermediate scattering function and the dynamical structure factor are derived by taking successive Fourier transforms. In the vicinity of the wall the time-dependent coherent structure function is found to decay faster than in the bulk. For coinciding positions near the wall the form of the structure function turns out to be independent of the orientation of the wall. Numerical results are shown to corroborate these findings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call