Abstract

Extensive molecular dynamics simulations of liquid sodium have been carried out to evaluate correlation functions of several dynamical quantities. We report the results of a novel analysis of the longitudinal and transverse correlation functions obtained by evaluating directly their self- and distinct contributions at different wavevectors k. It is easily recognized that the self-contribution remains close to its k → 0 limit, which turns out to be exactly the autocorrelation function of the single particle velocity. The wavevector dependence of the longitudinal and transverse spectra and their self- and distinct parts is also presented. By making use of the decomposition of the velocity autocorrelation spectrum in terms of longitudinal and transverse parts, our analysis is able to recognize the effect of different dynamical processes in different frequency ranges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.