Abstract

An approximate calculation method of time correlations by use of delayed coordinate is proposed. For a solvable piecewise linear hyperbolic chaotic map, this approximation is compared with the exact calculation, and an exponential convergence for the maximum time delay M is found. By use of this exponential convergence, the exact result for M →∞ is extrapolated from this approximation for the first few values of M . This extrapolation is shown to be much better than direct numerical simulations based on the definition of the time correlation function. As an application, the irregular dependence of diffusion coefficients similar to Takagi or Weierstrass functions is obtained from this approximation, which is indistinguishable from the exact result only at M = 2. The method is also applied to the

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.