Abstract

New laser ablation inductively coupled plasma mass spectrometry U-Pb dating on zircon and monazite was performed to estimate the time required for the building of the Serre batholith in Calabria. Age spectra from the bottom and top of the pluton are characterized by two main peaks at 306 and 295 Ma, resulting from a mutual interference between serial intrusive events. On this basis, the emplacement of the top granodiorite layer postdates by about 10 m.yr. emplacement of the lower tonalite layer. These results have been incorporated into a two-dimensional numerical thermal model, assuming overaccretion of a batholith in an extensional tectonic regime. With this approach it was possible to reproduce pressure-temperature paths for various levels of the continental crust and define timing for low-pressure regional and contact metamorphism. In a unique tectonomagmatic scenario the model reproduces regional low-pressure metamorphic effects in the lower to intermediate continental crust and, with a time lag of about 6 m.yr., contact metamorphism in the upper crust. Finally, we propose a conceptual model for the emplacement of the Serre batholith in an extensional tectonic setting. Space for magma can be created by lower crust thinning and rock uplift at the bottom and top of the batholith, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.