Abstract

Restricted to picosecond scale time gaps, the previous reported temporal cloaking schemes are hardly possible for practical applications. In this paper, we report a nanosecond scale temporal cloaking regime based on the fast/slow light effect in unbalanced fiber Mach-Zehnder interferometers. By exerting a radio frequency modulation onto the probe light, we broke through the gap time limit. A time gap up to 5.3ns was created and experimentally observed. The modulation signal in the time gap was concealed efficiently. Realizing nanosecond time gaps is critical for potential applications of temporal cloaking, such as secure communication and signal processing. This solution may push this fascinating idea into reality

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call