Abstract

Restricted to picosecond scale time gaps, the previous reported temporal cloaking schemes are hardly possible for practical applications. In this paper, we report a nanosecond scale temporal cloaking regime based on the fast/slow light effect in unbalanced fiber Mach-Zehnder interferometers. By exerting a radio frequency modulation onto the probe light, we broke through the gap time limit. A time gap up to 5.3ns was created and experimentally observed. The modulation signal in the time gap was concealed efficiently. Realizing nanosecond time gaps is critical for potential applications of temporal cloaking, such as secure communication and signal processing. This solution may push this fascinating idea into reality

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.