Abstract
We study the transition to the continuum of an initially bound quantum particle in $\RR^d$, $d=1,2,3$, subjected, for $t\ge 0$, to a time periodic forcing of arbitrary magnitude. The analysis is carried out for compactly supported potentials, satisfying certain auxiliary conditions. It provides complete analytic information on the time Laplace transform of the wave function. From this, comprehensive time asymptotic properties (Borel summable transseries) follow. We obtain in particular a criterion for whether the wave function gets fully delocalized (complete ionization). This criterion shows that complete ionization is generic and provides a convenient test for particular cases. When satisfied it implies absence of discrete spectrum and resonances of the associated Floquet operator. As an illustration we show that the parametric harmonic perturbation of a potential chosen to be any nonzero multiple of the characteristic function of a measurable compact set has this property.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.