Abstract

This work revisits and extends in various directions a work by J.Z. Farkas and P. Hinow (Math. Biosc and Eng, 8 (2011) 503-513) on structured populations models (with bounded sizes) with diffusion and generalized Wentzell boundary conditions. In particular, we provide first a self-contained $L^{1}$ generation theory making explicit the domain of the generator. By using Hopf maximum principle, we show that the semigroup is always irreducible regardless of the reproduction function. By using weak compactness arguments, we show first a stability result of the essential type and then deduce that the semigroup has a spectral gap and consequently the asynchronous exponential growth property. Finally, we show how to extend this theory to models with arbitrary sizes and point out an open problem pertaining to this extension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.