Abstract
The matrix Riccati differential equation (RDE) raises in a wide variety of applications for science and applied mathematics. We are particularly interested in the Hermitian Riccati Differential Equation (HRDE). Radon's lemma gives a solution representation to HRDE. Although solutions of HRDE may show the finite escape time phenomenon, we can investigate the time asymptotic dynamical behavior of HRDE by its extended solutions. In this paper, we adapt the Hamiltonian Jordan canonical form to characterize the time asymptotic phenomena of the extended solutions for HRDE in four elementary cases. The extended solutions of HRDE exhibit the dynamics of heteroclinic, homoclinic and periodic orbits in the elementary cases under some conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.