Abstract

This paper uses the conformal Einstein equations and the conformal representation of spatial infinity introduced by Friedrich to analyse the behaviour of the gravitational field near null and spatial infinity for the development of initial data which are, in principle, non-conformally flat and time asymmetric. The paper is the continuation of the investigation started in Class. Quantum Grav. 21 (2004) 5457–92, where only conformally flat initial data sets were considered. For the purposes of this investigation, the conformal metric of the initial hypersurface is assumed to have a very particular type of non-smoothness at infinity in order to allow for the presence of non-Schwarzschildean stationary initial data sets in the class under study. The calculation of asymptotic expansions of the development of these initial data sets reveals—as in the conformally flat case—the existence of a hierarchy of obstructions to the smoothness of null infinity which are expressible in terms of the initial data. This allows for the possibility of having spacetimes where future and past null infinity have different degrees of smoothness. A conjecture regarding the general structure of the hierarchy of obstructions is presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call