Abstract

Broadband acoustic signals around 1 kHz propagate through shallow water oceanic waveguides of ~100 m in depth and ~2 km in range as multiple ray-like wavefronts. These acoustic arrivals can be characterized by the following observables: travel-time (TT), direction-of-arrival (DOA), and direction-of-departure (DOD). By applying double-beamforming on the point-to-point signals recorded between two source-receiver arrays, the acoustic contribution of each arrival can be separated from the multi-reverberated data and the TT, DOA, and DOD observable variations are accurately measured. This study deals with the use of time-angle sensitivity kernels (TASK) to estimate the observable variations induced by sound speed perturbations in the waveguide. This approach is based on the first order Born approximation and takes into account the finite-frequency effects associated with wave propagation. The robustness the TASK approach is analyzed and compared to numerical parabolic equation simulations involving different sound speed perturbations. For example, parameters such as the perturbation location, the value and shape of the perturbation in the waveguide are modified. The combination of several perturbations and the influence of the source-receiver array apertures on the TT, DOA, and DOD estimates are also studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.