Abstract

ABSTRACTFerroelectrets with good piezoelectric coefficients have been produced based on cellular polyethylene (PE) via extrusion film blowing. The quasi‐static piezoelectric coefficient (d33) value obtained (935 pC/N) was well above typical values for cellular polypropylene (PP) considered as the workhorse of piezoelectric polymers. Here, a focus was made on increasing the time and thermal stability of cellular PE piezoelectric activity. To do so, specific thermal treatments were applied on the films to improve their microstructure. First, films crystallinity was increased via thermal annealing at 80 °C for 5 min leading to a 32% increase of the initial d33 value as well as its time stability. However, thermal treatment did not give a significant thermal stability improvement because the treated films almost completely lost their piezoelectric activity (96%) at 80 °C. Therefore, the films were treated with orthophosphoric acid resulting in substantial charge stability improvements, especially at higher temperature. Overall, it was possible to increase the continuous service temperature (CST) of PE ferroelectrets from 40 to 80 °C, which is similar to the typical CST of PP. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47646.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.