Abstract

The study of aging relates to changes in physical and functional dimensions that occur over time in living organisms. Yet, a model that establishes the hierarchical relationship and interlaced time courses of molecular, phenotypic, and functional hierarchical domains of aging in humans has not been established. We propose that studying the mechanisms and consequences of aging through the lens of these hierarchical domains and their connections will provide clarity in semantics and enhance a translational perspective. The study of human aging would be most informative from a life course, longitudinal perspective, given that manifestations of aging are already detectable early in life at the molecular level, yet the phenotypic responses remain masked by compensatory/resiliency mechanisms. Understanding the nature of these mechanisms is paramount for developing interventions that reduce the burden of disease and disability in older persons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.