Abstract
We present time- and space-resolved spectroscopic observations of a laser-produced carbon plasma, in an argon background. An Nd : YAG laser pulse, 370 mJ, 3.5 ns, at 1.06 µm, with a fluence of 6.9 J cm−2, is used to produce a plasma from a solid graphite target in a 0.5 to 415 mTorr argon background. The spectral emission in the visible is recorded with 15 ns time resolution. We use 20 ns time resolution plasma imaging, filtered at characteristic carbon species emission wavelengths, to study the dynamics of the expanding plasma. The carbon plasma emission is found to evolve from the characteristic of single ionized carbon, to a more complex one, where C2 and C3 molecular bands dominate. Several plasma fronts, with either ionic or molecular composition, are seen to detach from the laser target plasma. The temporal and spatial features of the molecular carbon species evolution are found to be dependent on the actual argon background pressure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.