Abstract

This paper describes a facile method to control the morphology of polymer colloids and the architecture of polymer film via miniemulsion polymerization. By taking advantage of cyclization between the symmetrical diacrylate cross-linker hexamethylene diacrylate (HDDA) and the pendent vinyl in colloidal particles, the morphology of polymer colloids and the architecture of the after-formed polymer film were able to be well controlled by tuning the loading of cross-linker HDDA and crosslinking time. Four kinds of polymer colloid morphologies and four kinds of film architecture (honeycomb, close-packed, loose-packed, and enhanced-honeycomb) were characterized by TEM. The film formation mechanisms behind them were proposed based on the special and interesting results including Z-average size of the colloidal particles, Mc (molecular weight between crosslinking points) and mechanical properties of polymer film. Our results highly suggested that the morphology of polymer colloids and the polymer film architecture together determine the adhesive properties of the colloidal polymer film. The best of 180°-peel resistance, T-peel resistance and shear resistance of the polymer films were 138.12 N/25 mm, 40.98 N/25 mm and 25.72 N/cm2 at 2.0 phm, 2.0 phm and 0.4 phm with the same crosslinking time of 90 min, respectively. The proposed method is promising to be scaled up for industrial production due to its well adaptability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call