Abstract
In an effort to elucidate the spin (rather than charge) degrees of freedom in colloidal semiconductor nanocrystal quantum dots, we report on a series of static and time-resolved photoluminescence measurements of colloidal CdSe quantum dots in ultrahigh magnetic fields up to 45 T. At low temperatures (1.5-40 K), the steady-state photoluminescence (PL) develops a high degree of circular polarization with applied magnetic field, indicating the presence of spin-polarized excitons. Time-resolved PL studies reveal a marked decrease in radiative exciton lifetime with increasing magnetic field and temperature. Except for an initial burst of unpolarized PL immediately following photoexcitation, high-field time-resolved PL measurements reveal a constant degree of circular polarization throughout the entire exciton lifetime, even in the presence of pronounced exciton transfer via Förster energy transfer processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.