Abstract

The activity of individual afferent neurones in the mammalian cochlea can be driven by neurotransmitter released from a single synaptic ribbon in a single inner hair cell. Thus, a ribbon synapse must be able to transmit all the information on sound frequency, intensity and timing carried centrally. This task is made still more demanding by the process of binaural sound localization that utilizes separate computations of time and intensity, with temporal resolution as fine as 10 micros in central nuclei. These computations may rely in part on the fact that the response phase (at the characteristic frequency) of individual afferent neurones is invariant with intensity. Somehow, the ribbon synapse can provide stronger synaptic drive to signal varying intensity, without accompanying changes in transmission time that ordinarily occur during chemical neurotransmission. Recent ultrastructural and functional studies suggest features of the ribbon that may underlie these capabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.