Abstract

Two time accurate local time stepping (LTS) strategies originally developed for the Euler equations are presented and applied to the unsteady shallow water equations of open channel flow. Using the techniques presented allows individual cells to be advanced to different points in time, in a time accurate fashion. The methods shown are incorporated into an explicit finite volume version of Roe's scheme which is implemented in conjunction with an upwind treatment for the source terms. A comparison is made between the results obtained using the conventional time stepping approach and the two LTS methods through a series of test cases. The results illustrate a number of benefits of using LTS which included reduced run times and improved solution accuracy. In addition it is shown how using an upwind source term treatment can be beneficial for flows dominated by the geometry. Copyright © 2005 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.