Abstract

In Mexico one in 14 deaths are caused by diabetes mellitus (DM) or by the macro and microvascular disorders derived from it. A continuous hyperglycemic state is characteristic of DM, resulting from a sustained state of insulin resistance and/or a dysfunction of β-pancreatic cells. Acaciella angustissima is a little studied species showing a significant antioxidant activity that can be used as treatment of this disease or preventive against the complications. The objective of this study was to explore the effect of oral administration of A. angustissima methanol extract on physiological parameters of streptozotocin-induced diabetic rats. The results indicated a significant reduction in blood glucose levels, an increase in serum insulin concentration, a decrease in lipid levels and an improvement in the parameters of kidney damage by applying a concentration of 100 mg/Kg B.W. However, glucose uptake activity was not observed in the adipocyte assay. Moreover, the extract of A. angustissima displayed potential for the complementary treatment of diabetes and its complications likely due to the presence of bioactive compounds such as protocatechuic acid. This study demonstrated that methanol extract of Acacciella angustissima has an antidiabetic effect by reducing the levels of glucose, insulin and improved physiological parameters, hypolipidemic effect, oxidative stress and renal damage in diabetic rats.

Highlights

  • Hyperglycemia is a feature of diabetes mellitus (DM), resulting in a sustained state of insulin resistance and/or a dysfunction secreting of β-cells of the pancreas [1]

  • The antioxidant capacity in vitro using ABTS, with a preliminary test to evaluate compounds having electron-donating and/or proton-free radical quenching properties and the inhibition of oxidative processes based on the above results (Table 1), it was possible to demonstrate that Methanolic Extract (MEA) may be a potential source of antioxidant compounds and these results suggest that this activity could inactivate the radicals generated in a body in the state of hyperglycemia

  • The results showed significantly elevated amounts of glucose and a reduction in serum insulin concentrations in untreated diabetic animals when compared to healthy control and MEA control

Read more

Summary

Introduction

Hyperglycemia is a feature of diabetes mellitus (DM), resulting in a sustained state of insulin resistance and/or a dysfunction secreting of β-cells of the pancreas [1]. Additional consequences of diabetes include macro and microvascular complications derived from the characteristic oxidative stress of the disease. This oxidative stress occurs because of glucose being oxidized which leads to the formation of reactive oxygen species (ROS). An in vivo model of oxidative stress occurs after injecting streptozotocin (STZ), causing toxic effects through damaging β-cells of the pancreas [2]. Plant extracts have been used as complementary or alternative treatments in patients with DM, an activity that has been documented since ancient times in developing countries [4]. Its efficiency has been attributed to the presence of polyphenolic compounds present in various plants and foods, whose antioxidant activity contributes with scavenging free radicals and prevents DM [5]. The hypoglycemic activity of these plants is due to the presence of compounds such as alkaloids, terpenes, flavonoids, saponins, among others, that have been proposed to possess insulinomimetic activity, their mechanism of action is unknown [6]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call