Abstract

We investigated the relevance of the prostaglandin D2 pathway in Alzheimer's disease, because prostaglandin D2 is a major prostaglandin in the brain. Thus, its contribution to Alzheimer's disease merits attention, given the known impact of the prostaglandin E2 pathway in Alzheimer's disease. We used the TgF344-AD transgenic rat model because it exhibits age-dependent and progressive Alzheimer's disease pathology. Prostaglandin D2 levels in hippocampi of TgF344-AD and wild-type littermates were significantly higher than prostaglandin E2. Prostaglandin D2 signals through DP1 and DP2 receptors. Microglial DP1 receptors were more abundant and neuronal DP2 receptors were fewer in TgF344-AD than in wild-type rats. Expression of the major brain prostaglandin D2 synthase (lipocalin-type PGDS) was the highest among 33 genes involved in the prostaglandin D2 and prostaglandin E2 pathways. We treated a subset of rats (wild-type and TgF344-AD males) with timapiprant, a potent highly selective DP2 antagonist in development for allergic inflammation treatment. Timapiprant significantly mitigated Alzheimer's disease pathology and cognitive deficits in TgF344-AD males. Thus, selective DP2 antagonists have potential as therapeutics to treat Alzheimer's disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.