Abstract

ABSTRACTT cell Ig mucin-3 (Tim-3), an immune checkpoint inhibitor, shows therapeutic potential. However, the molecular mechanism by which Tim-3 regulates immune responses remains to be determined. In particular, very little is known about how Tim-3 works in innate immune cells. Here, we demonstrated that Tim-3 is involved in the development of tumor-promoting M2 macrophages in colon cancer. Manipulation of the Tim-3 pathway significantly affected the polarization status of intestinal macrophages and the progression of colon cancer. The Tim-3 signaling pathway in macrophages was explored using microarray, co-immunoprecipitation, gene mutation, and high-content analysis. For the first time, we demonstrated that Tim-3 polarizes macrophages by directly binding to STAT1 via residue Y256 and Y263 in its intracellular tail and inhibiting the STAT1-miR-155-SOCS1 signaling axis. We also identified a new signaling adaptor of Tim-3 in macrophages, and, by modulating the Tim-3 pathway, demonstrated the feasibility of altering macrophage polarization as a potential tool for treating this kind of disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.