Abstract
We introduce a new category C, which we call the cluster category, obtained as a quotient of the bounded derived category D of the module category of a finite-dimensional hereditary algebra H over a field. We show that, in the simply laced Dynkin case, C can be regarded as a natural model for the combinatorics of the corresponding Fomin–Zelevinsky cluster algebra. In this model, the tilting objects correspond to the clusters of Fomin–Zelevinsky. Using approximation theory, we investigate the tilting theory of C, showing that it is more regular than that of the module category itself, and demonstrating an interesting link with the classification of self-injective algebras of finite representation type. This investigation also enables us to conjecture a generalisation of APR-tilting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.