Abstract

We consider the tilting instability of a magnetically confined spheromak using three-dimensional magnetohydrodynamic and relativistic particle-in-cell calculations with an application to astrophysical plasmas, specifically those occurring in magnetar magnetospheres. The instability is driven by the counter-alignment of the spheromak's intrinsic magnetic dipole with the external magnetic field. Initially, the spheromak rotates – tilts – trying to lower its magnetic potential energy. As a result, a current sheet forms between the internal magnetic field of a spheromak and the confining field. Magnetic reconnection sets in; this leads to the annihilation of the newly counter-aligned magnetic flux of the spheromak. This occurs on a few Alfvén time scales. In the case of a higher-order (second-order) spheromak, the internal core is first pushed out of the envelope, resulting in formation of two nearly independent tilting spheromaks. Thus, the magnetically twisted outer shell cannot stabilize the inner core. During dissipation, helicity of the initial spheromak is carried away by torsional Alfvén waves, violating the assumptions of the Taylor relaxation theorem. In applications to magnetar giant flares, fast development of tilting instabilities and no stabilization of the higher-order spheromaks make it unlikely that trapped spheromaks are responsible for the tail emission lasting hundreds of seconds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call