Abstract

Abstract Using micromagnetic simulations, in this study we demonstrate the tilted perpendicular anisotropy -induced spin-orbit ratchet effect. During spin-orbit torque (SOT)-induced magnetization switching, the critical currents required to switch between the two magnetization states (upward and downward magnetization) are asymmetric. In addition, in the nanowire structure, tilted anisotropy induces formation of tilted domain walls (DWs). The tilted DWs exhibit a ratchet behavior during motion. The ratchet effect during switching and DW motions can be tuned by changing the current direction with respect to the tilting direction of anisotropy. The ratchet motion of the DWs can be used to mimic the Leaky–Integrate–Fire function of a biological neuron, especially the asymmetric property of the “potential” and “reset” processes. Our results provide a full understanding of the influence of tilted perpendicular anisotropy on SOT-induced magnetization switching and DW motion, and are beneficial for design of further SOT-based devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.