Abstract

Lorentz symmetry appears as a quite robust feature of the strongly interacting Dirac materials even though the lattice interactions break such a symmetry. We here demonstrate that the Lorentz symmetry is restored at the quantum-critical point (QCP) separating the tilted Dirac semimetal, breaking this symmetry already at the noninteracting level, from a gapped s-wave superconducting instability. To this end, we employ a one-loop ϵ = (3 − D)-expansion close to the D = 3 upper critical dimension of the corresponding Gross-Neveu-Yukawa field theory. In particular, we show that the tilt parameter is irrelevant and ultimately vanishes at the QCP separating the two phases. In fact, as we argue here, such a Lorentz symmetry restoration may be generic for the strongly interacting tilted Dirac semimetals, irrespective of whether they feature mirror-symmetric or mirror-asymmetric tilting, and is also insensitive to whether the instability represents an insulator or a gapped superconductor. The proposed scenario can be tested in the quantum Monte Carlo simulations of the interacting tilted Dirac fermion lattice models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call