Abstract

This study compared the biomechanical behavior of tilted long implant and vertical short implants to support fixed prosthesis in an atrophic maxilla. The maxilla model was built based on a tomographic image of the patient. Implant models were based on micro-computer tomography imaging of implants. The different configurations considered were M4S, four vertical anterior implants; M4T, two mesial vertical implants and two distal tilted (45°) implants in the anterior region of the maxilla; and M6S, four vertical anterior implants and two vertical posterior implants. Numerical simulation was carried out under bilateral 150 N loads applied in the cantilever region in axial (L1) and oblique (45°) (L2) direction. Bone was analyzed using the maximum and minimum principal stress (σmax and σmin ), and von Mises stress (σvM ) assessments. Implants were analyzed using the σvM . The higher σmax was observed at: M4T, followed by M6S/L1, M6S/L2, M4S/L2, and M4S/L1 and the higher σvM : M4T/L1, M4T/L2 and M4S/L2, M6S/L2, M4S/L1, and M6S/L1. The presence of distal tilted (all-on-four) and distal short implants (all-on-six) resulted in higher stresses in both situations in the maxillary bone in comparison to the presence of vertical implants (all-on-four).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.