Abstract
We report novel phase behavior for a system of disclike ellipsoidal particles interacting via a pair potential. We identify a structural phase transition between two hexagonal columnar phases, both tilted, induced by spatial ordering of the tilt about the columnar axis and positional correlations between neighboring columns upon cooling. The local minima of the potential energy surface support irregular helical arrangements of the discoids about the columnar axis for the high-temperature hexagonal columnar phase, and a tilted arrangement for both phases. Our study demonstrates that dispersion-repulsion forces corresponding to oblate ellipsoids are sufficient to produce a columnar phase that is tilted and helical.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.