Abstract

We identify a finite wave-number instability of a 90 degrees tilt grain boundary in three-dimensional lamellar phases which is absent in two-dimensional configurations. Both a stability analysis of the slowly varying amplitude or envelope equation for the boundary, and a direct numerical solution of an order parameter model equation are presented. The instability mode involves two-dimensional perturbations of the planar base boundary, and is suppressed for purely one-dimensional perturbations. We find that both the most unstable wave numbers and their growth rate increase with epsilon , the dimensionless distance away from threshold of the lamellar phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.