Abstract

PurposeOrthostasis increases the variability of continuously recorded blood pressure (BP). Low-frequency (LF) BP oscillations (Mayer waves) in this setting are related to the vascular-sympathetic baroreflex. Mechanisms of increased high-frequency (HF) BP oscillations at the periodicity of respiration during orthostasis have received less research attention. A previously reported patient with post-neurosurgical orthostatic hypotension (OH) and vascular-sympathetic baroreflex failure had large tilt-evoked, breathing-driven BP oscillations, suggesting that such oscillations can occur independently of vascular-sympathetic baroreflex modulation. In the present study we assessed effects of orthostasis on BP variability in the frequency domain in patient cohorts with or without OH.MethodsPower spectral analysis of systolic BP variability was conducted on recordings from 73 research participants, 42 with neurogenic OH [13 pure autonomic failure, 14 Parkinson’s disease (PD) with OH, 12 parkinsonian multiple system atrophy, and 3 status post-brainstem neurosurgery] and 31 without OH (control group of 16 healthy volunteers and 15 patients with PD lacking OH), before, during, and after 5′ of head-up tilt at 90 degrees from horizontal. The data were log transformed for statistical testing.ResultsAcross all subjects, head-up tilting increased HF power of systolic BP variability (p = 0.001), without a difference between the neurogenic OH and control groups. LF power during orthostasis was higher in the control than in the OH groups (p = 0.009).ConclusionsThe results of this observational cohort study confirm those based on our case report and lead us to propose that even in the setting of vascular-sympathetic baroreflex failure orthostasis increases HF power of BP variability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call