Abstract
The tilt aftereffect (TAE) is a visual illusion in which prolonged adaptation to an oriented stimulus causes shifts in subsequent perceived orientations. Historically, neural models of the TAE have explained it as the outcome of response suppression of neurons tuned to the adapting orientation. Recent physiological studies of neurons in primary visual cortex (V1) have confirmed that such response suppression exists. However, it was also found that the preferred orientations of neurons shift away from the adapting orientation. Here we show that adding this second factor to a population coding model of V1 improves the correspondence between neurophysiological data and TAE measurements. According to our model, the shifts in preferred orientation have the opposite effect as response suppression, reducing the magnitude of the TAE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.