Abstract
Wheat (Triticutna estivum L. emend Thell.) grain yields are highly dependent upon the number of spike‐bearing tillers produced per plant. Salinity, drought, and other environmental stresses can greatly affect the developmeanntd v iability of tillers. Wed eterminetdh e effects of soil salinity on the occurrence and rate of tiller development and the incidence of tiller abortion in spring wheat cultivars, Anza and Yecora Rojo. Plants were grown in Pachappa fine sandy loam soil (mixed thermic, Mollic Haploxeralf)in outdoor lysimeters. Three salinity treatments were imposed by irrigating with waters containing equal weights of NaCl and CaCl2 (electrical conductivities of ≈ 1, 12, or 18 dS m−1). Salinity significantly decreased the number of primary and secondary tillers in both cultivars. Soil waters salinities ≥7.5 dS m−1 (mean electrical conductivity of the soil water in the rootzone during tiller development SW) eliminated most of the secondary tillers and greatly reduced the number of TO, T3, and T4 tillers. However, the percentage of tillers producing spikes actually increased at SW up to 8 dS m−1. Higher salinities reduced the percentage of tillers with spikes, but not as much as the reduction in tillers. Tiller and spike production per plant decreasead bout 0.13 to 0.15 organs for each unit increase in SW. Of all the potential tillers these cultivars can produce, the primary tillers on Leaves 1 and 2 (i.e., T1 and T 2) were the least susceptible to salt stress, partly because they emerged before salinity builds up during the irrigation season. Adjusting planting densities to increase the number of anticipated spike‐bearing culms per unit area could help to maintain yields on salt‐affected soils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.