Abstract

The effects of deep tillage, straw mulching, and irrigation on corn ( Zea mays L.) yield on a loamy sand (mixed, hyperthermic, Typic Ustipsamment) were studied for early (high evaporativity) and normally sown (relatively low evaporativity) crop for 3 years in a semi-arid sub-tropical monsoon region at Punjab Agricultural University, Ludhiana, India. Treatments included all combinations of two tillage systems (conventional tillage — harrowing the soil to a 10-cm depth; deep tillage — chiselling 40 cm deep, 35–40 cm apart), two irrigation regimes (75 mm irrigation when net open pan evaporation accumulated to 75 mm or 50 mm), and two straw mulch rates (0 and 6 Mg ha −1). Deep tillage significantly reduced soil strength (cone index) and caused deeper and denser rooting than conventional tillage, more so in the dry season and with the infrequent irrigation regime than in the wet season and frequent irrigation regime. Mulch also improved rooting by influencing the hydrothermal regime of the soil. Better rooting with deep tillage and/or mulch helped the crop to extract stored soil water more efficiently, which was reflected in a favourable plant water status (indicated by canopy temperature). Averaged across years, irrigation, and mulch, deep tillage increased grain yield by 1.6 Mg ha −1 for the early season and 0.5 Mg ha −1 for the normal season crop over the yield of 2.0 Mg ha −1 achieved with conventional tillage regardless of season. Yield increase with mulching was also greater for the early season crop. Crop response to deep tillage and mulching was generally linked to the interplay between water supply (rain + irrigation) and demand (seasonal evaporativity) during the growing season. Increasing irrigation frequency increased crop yield when evaporativity exceeded rainfall early in the growing season. The results show that higher corn yields on coarse-textured soils in these regions may be achieved by advancing the seeding time and by using a proper combination of deep tillage, mulch, and irrigation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.