Abstract

A photonic topological insulator is a structure that isolates radiation in the bulk rather than at the edge (surface). Paradoxically, applications of such an insulator focus on its conducting edge states, which are robust against structural defects. We suggest a tiling photonic topological insulator constructed from identical prism resonators connected to each other. The light beam circulates inside the tiling bulk without propagation. However, we experimentally demonstrate a topologically-protected propagating state due to the disconnected faces of the edge resonators. The investigated state is robust against removing or attaching prism resonators. Moreover, the protection principle is phase-free and therefore highly scalable both in wavelength and resonator size. The tiling is suggested for active topological photonic devices and laser arrays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call