Abstract
We consider the problem of tiling a segment {0, ..., n} of the discrete line. More precisely, we ought to characterize the structure of the patterns that tile a segment and their number. A pattern is a subset of ℕ. A tiling pattern or tile for {0, ..., n} is a subset \(A \in {{\mathcal P}({\mathbb{N}})}\) such that there exists \(B \in {{\mathcal P}({\mathbb{N}})}\) and such that the direct sum of A and B equals {0, ..., n}. This problem is related to the difficult question of the decomposition in direct sums of the torus ℤ/nℤ (proposed by Minkowski). Using combinatorial and algebraic techniques, we give a new elementary proof of Krasner factorizations. We combinatorially prove that the tiles are direct sums of some arithmetic sequences of specific lengths. Besides, we show there are as many tiles whose smallest tilable segment is {0, ..., n} as tiles whose smallest tilable segment is {0, ..., d}, for all strict divisors d of n. This enables us to exhibit an optimal linear time algorithm to compute for a given pattern the smallest segment that it tiles if any, as well as a recurrence formula for counting the tiles of a segment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.