Abstract
Motivation: Individual probes on an Affymetrix tiling array usually behave differently. Modeling and removing these probe effects are critical for detecting signals from the array data. Current data processing techniques either require control samples or use probe sequences to model probe-specific variability, such as with MAT. Although the MAT approach can be applied without control samples, residual probe effects continue to distort the true biological signals.Results: We propose TileProbe, a new technique that builds upon the MAT algorithm by incorporating publicly available data sets to remove tiling array probe effects. By using a large number of these readily available arrays, TileProbe robustly models the residual probe effects that MAT model cannot explain. When applied to analyzing ChIP-chip data, TileProbe performs consistently better than MAT across a variety of analytical conditions. This shows that TileProbe resolves the issue of probe-specific effects more completely.Availability: http://www.biostat.jhsph.edu/∼hji/cisgenome/index_files/tileprobe.htmContact: hji@jhsph.eduSupplementary information: Supplementary data are available at Bioinformatics online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.