Abstract

Encapsulation of pancreatic islets prevents graft revascularization after transplantation, resulting in graft hypoxia and attrition. Hypoxia-resistant islets would be ideal for encapsulation. Tilapia, a tropical teleost fish, have large, anatomically discrete islets that can be easily harvested without expensive, fickle islet isolation procedures and that provide mammalian-like glucose tolerance profiles when transplanted into diabetic recipients. Because tilapia can live in stagnant water, we speculated that tilapia islets might tolerate lower oxygen tensions than mammalian islets. Tilapia and rat islets ( n = 30) were placed in paired 60-mm Petri dishes containing 10 mL of deoxygenated CMRL-1066 media and cultured together in sealed chambers gassed with 95% N 2/5% CO 2. Islet viability was determined by fluorscein diacetate/ethidium bromide staining at intervals varying from 2.5 h to 7 days; blood gas measurements were obtained on media samples at the end of selected incubation intervals. Rat islets underwent near-total necrosis and fragmentation in <24 h; occasional viable single cells could be identified until about 72 h. On the other hand, the fish islets showed no loss of viability until about 72 h when some showed mild central necrosis. Even at 7 days, all fish islets appeared roughly 50% viable. Fish islets cultured under hypoxic conditions for 72 h (media, pO 2 = 27.8 mmHg) and then transplanted into streptozotocin-diabetic athymic nude mice were viable (6/6) but showed some diminished function (3/6) over a 25-day follow-up period. Our results suggest that tilapia islets will survive and function at lower oxygen tensions than mammalian islets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call