Abstract

Tilapia is the common name applied to three genera of fish in the family Cichlidae: Oreochromis, Sarotherodon, and Tilapia. The species that are most important for aquaculture are in the genus Oreochromis, including the Nile tilapia, O. niloticus, the Mozambique tilapia, O. mossambicus, the blue tilapia, O. aureus, and O. urolepis hornorum. Fish farmers are now growing many strains of these parent species along with many hybrid strains. Native to Africa and the Middle East, these species have become the second most common farm raised food fish in the world. In the 1960s and 1970s tilapia culture was aimed at the production of food for local consumption, utilizing primarily extensive or semiintensive culture methods with minimal inputs of fertilizer or feeds. However, tilapia culture has expanded rapidly during the last decade as a result of technological advances associated with the intensification of culture practices. These include the development of new strains and hybrids, monosex male culture, formulated diets, a variety of semiintensive and intensive culture systems (e.g., ponds, cages, tanks, and raceways) and the utilization of greenhouses, geothermal, or industrial waste heat and advanced water treatment methods. Marketing programs have also nurtured a growing demand for tilapia in domestic and international markets. Annual worldwide production of cultured tilapia was less than 200,000 metric tons (mt) in 1984 and increased to 1,100,000 mt in 1999. In the Americas, the increased production of farmed tilapia is due in large part to their adaptability to a diverse array of production systems. These include subsistence level, extensive pond culture in the Eastern Caribbean, integrated animal-fish culture in Guatemala and Panama, semiintensive pond culture in Honduras, intensive pond culture in Colombia, Costa-Rica and Jamaica, semiintensive cage culture in several countries, intensive flowthrough tank and raceway culture in the U.S., and a variety of highly intensive indoor recirculating tank culture in the U.S. In addition, there is increasing production of tilapia in shrimp ponds in Ecuador to ameliorate shrimp disease problems. In this article, representatives of various systems are compared with respect to technological approaches and constraints. Poor management of tilapia genetic resources is causing a loss of productivity, and research in genetics and selective breeding will be needed to improve production efficiency, fillet yields, and environmental tolerance. Continuing nutritional studies will also be needed to increase efficiency and profitability. With intensification, infectious diseases have become more serious, and fish health management through biosecurity procedures, environmental manipulation, reduction of stress, nutrition, genetics, and the use of prophylactic therapeutics will be essential. Increasing waste production will require novel methods for integrating tilapia culture with the production of other valuable crops to maximize nutrient recovery and minimize pollution. Market development and quality control will be critical to ensure market growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.