Abstract

Regularization is possibly the most popular method for solving discrete ill-posed problems, whose solution is less sensitive to the error in the observed vector in the right hand than the original solution. This paper presents a new modified truncated randomized singular value decomposition (TR-MTRSVD) method for large Tikhonov regularization in standard form. The proposed TR-MTRSVD algorithm introduces the idea of randomized algorithm into the improved truncated singular value decomposition (MTSVD) method to solve large Tikhonov regularization problems. The approximation matrix Ãℓ produced by randomized SVD is replaced by the closest matrix Ãk̃ in a unitarily invariant matrix norm with the same spectral condition number. The regularization parameters are determined by the discrepancy principle. Numerical examples show the effectiveness and efficiency of the proposed TR-MTRSVD algorithm for large Tikhonov regularization problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.