Abstract

Background: Incremental hole-drilling with the integral method has been extensively used in composite laminates but is sensitive to small measurement errors. Error sensitivity can be reduced by limiting the number of depth increments used in the calculation procedure. This approach is limited if a rapidly varying residual stress distribution exists since the calculated stress in each incremental depth is considered constant. Distortion of stress results can consequently occur due to averaging effects if the depth increments become too large. Tikhonov regularization is usually applied in isotropic materials to smooth the resulting residual stress distribution and reduce stress uncertainties, but has only been applied to composite laminates using the slitting technique. Objective: The intention of this work is to extend the use of Tikhonov regularization to incremental hole-drilling of composite laminates using the integral method. Methods: Finite element modelling is used to calculate the necessary calibration coefficients for unit pulses of uniform stress. Monte Carlo simulation is used to the determine uncertainties in the calculated residual stress distributions. Tikhonov regularization is optimised to reduce the stress uncertainty, while ensuring that the stress solution is not distorted. Results: The method is demonstrated on a GFRP (Glass fibre reinforced plastic) laminate of [02/902]s construction and the calculated residual stress field is compared with those obtained by the standard integral method and series expansion. Conclusions: It is found that Tikhonov regularization significantly improves the accuracy of the standard integral method in composite laminates and shows good agreement with the series expansion method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.