Abstract

Maximum likelihood estimation problems are, in general, intractable optimization problems. As a result, it is common to approximate the maximum likelihood estimator (MLE) using convex relaxations. In some cases, the relaxation is tight: it recovers the true MLE. Most tightness proofs only apply to situations where the MLE exactly recovers a planted solution (known to the analyst). It is then sufficient to establish that the optimality conditions hold at the planted signal. In this paper, we study an estimation problem (angular synchronization) for which the MLE is not a simple function of the planted solution, yet for which the convex relaxation is tight. To establish tightness in this context, the proof is less direct because the point at which to verify optimality conditions is not known explicitly. Angular synchronization consists in estimating a collection of $n$ phases, given noisy measurements of the pairwise relative phases. The MLE for angular synchronization is the solution of a (hard) non-bipartite Grothendieck problem over the complex numbers. We consider a stochastic model for the data: a planted signal (that is, a ground truth set of phases) is corrupted with non-adversarial random noise. Even though the MLE does not coincide with the planted signal, we show that the classical semidefinite relaxation for it is tight, with high probability. This holds even for high levels of noise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.